If it's not what You are looking for type in the equation solver your own equation and let us solve it.
13x^2+24x-15=0
a = 13; b = 24; c = -15;
Δ = b2-4ac
Δ = 242-4·13·(-15)
Δ = 1356
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1356}=\sqrt{4*339}=\sqrt{4}*\sqrt{339}=2\sqrt{339}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(24)-2\sqrt{339}}{2*13}=\frac{-24-2\sqrt{339}}{26} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(24)+2\sqrt{339}}{2*13}=\frac{-24+2\sqrt{339}}{26} $
| B=a-4÷5 | | 3y^2-3y-100=0 | | 20x-5=15x | | 5x-12=2x-33 | | 20a^2+30a-20=0 | | 9x-5(3x)+6=0 | | 5x-10=102x*2 | | X=110+(-1y) | | 11t-5=105 | | X=110-y | | -4r-7r=15 | | X2=625;x | | 2(e+5)=e+5 | | –2(5x–1)=8 | | 17x+16=72+5x | | 1/3=10x-12/24 | | 2w=256 | | 81x+10=40+3x | | 9m-4=7m+9 | | 25^x-5^x-20=0 | | 1/2x+4=180 | | 5+a/2=1 | | 3-n/2=5 | | 2c=128 | | C=D-d/I | | 5m/2=3 | | 4.2x-6=4.2x | | 3z-7=25 | | (1.5)^x/10=3 | | -8+7k=20 | | 19.2=6.4*n | | 2x-6+x-4=18 |